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ABSTRACT
Layered Depth Images (LDI) compactly represent multiview images and videos and have widespread usage in
image-based rendering applications. In its typical use case scenario of representing a scanned environment, it has
proven to be a less costly alternative than separate viewpoint encoding. However, higher quality laser scanner
hardware and different user interaction paradigms have emerged, creating scenarios where traditional LDIs have
considerably lower efficacy. Wide-baseline setups create surfaces aligned to the viewing rays producing a greater
amount of sparsely populated layers. Free viewpoint visualization suffers from the variant quantization of depths
on the LDI algorithm, reducing resolution of the dataset in uneven directions. This paper presents an alternative
representation to the LDI, in which each layer of data is positioned in different viewpoints that coincide with the
original scanning viewpoints. A redundancy removal algorithm based on world-space distances as opposed to to
image-space is discussed, ensuring points are evenly distributed and are not viewpoint dependent. We compared
our proposed representation with traditional LDIs and viewpoint dependent encoding. Results showed the multi-
view LDI (MVLDI) creates a smaller number of layers and removes higher amounts of redundancy than traditional
LDIs, ensuring no relevant portion of data is discarded in wider baseline setups.
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1 INTRODUCTION
Image-based representations for rendering were ini-
tially introduced as more efficient alternatives to render
geometrically complex scenarios. More recently, they
have been tightly connected to Video-based rendering
(VBR), a growing field that has applications with high
rendering and storing requirements. Multiview+depth
(MVD) encoding and Layered Depth Images (LDI)
[11] have been the most popular approaches in these
scenarios, with LDI being a reportedly less costly
representation [13]. They are popular in this scenario
due to the fact that, being image-based, they can easily
incorporate advances in video compression algorithms.

However, both of the proposed representations are tar-
geted for applications with a predefined user paradigm
(3DTV, head-face parallax) and a preferably narrow-
baseline capture setup. Advances in 3D capturing tech-
nology have enabled developers to more accurately rep-
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resent the real world, enabling less restrictive applica-
tions to emerge [10] mainly in the fields of virtual and
mixed reality. While recent work has been focused on
coding tools for MVD, which can be applied to these
new scenarios, we consider an alternative representa-
tion for a single frame, enabling higher compression
from the start of the process.

The key advantage of the LDI representation over its al-
ternatives is the fact that redundancy between views can
be minimized during the encoding process [4]. How-
ever, its classical representation of a central + resid-
ual viewpoints establishes a main viewing direction in
which data can be optimally visualized, having disad-
vantages in a free camera navigation scenario. This has
a direct effect in the redundancy computation, mean-
ing that the sampling rate of the data is lower in the
direction of the optical rays coming from the central
viewpoint (Section 3.1). Moreover, on wide baseline
scenarios where cameras might be in an opposite direc-
tion to the central viewpoint, it might not be possible for
all data to be captured by one chosen central viewpoint
(Figure 1b), requiring a more distant virtual viewpoint
to be generated which, besides not being a trivial task,
will decrease the sampling rate of the data. Lastly, par-
allel surfaces to the central viewpoint optical rays are
intersected once in each layer, increasing the number



(a) Surfaces parallel to an optical ray creates
low populated additional layers.

(b) Choice of LDI central viewpoint might
not encode part of the data.

Figure 1: Problems with the classical LDI representa-
tion

of low populated residual layers in order to encode the
whole dataset (Figure 1).

We propose a novel image-based representation and en-
coding algorithm which successfully answers the afore-
mentioned problems: the Multiview Layered Depth Im-
age (MVLDI), where each layer is encoded according
to a different viewpoint among the several capturing
positions. By utilizing a modified view-generation al-
gorithm, we have better redundancy detection and a
smaller number of generated layers, while being able
to correctly encode data for a wide-baseline scenario,
which was only possible using MVD and no redun-
dancy estimation.

We tested our technique with different datasets, cam-
era setups and redundancy detection techniques, always
achieving higher compression rates than the alterna-
tives (MVD, LDI) without discarding necessary data.
MVLDI is shown to provide a more efficient represen-
tation for a single frame while being applicable to video
scenarios, and correctly incorporates the advances in
video compression technology and depth encoding.

This article reviews related work in image-based rep-
resentations, followed by a description of the MVLDI
generation algorithm and redundancy detection. Fi-
nally, results are presented with an in-depth compari-

son between our approach and the current image-based
representations.

2 RELATED WORK
Regarding image-based representations for video-based
rendering or depth image-based rendering, two main
lines of research can be identified: multiview+depth
coding and layered depth images or videos. This sec-
tion will describe relevant work in both areas.

Merkle et al. [8] and Smolic et al. [12] introduce
multiview+depth coding, where depth data is associ-
ated with the video and encoded as a video stream. Al-
though compression artifacts can be found in the ren-
dered results, the authors claim that intermediate views
are more easily generated at the user side with full data.
More recent work by Do et al. [2] proposes an inpaint-
ing algorithm which has a fast GPU implementation
where holes are filled with the average in a 5x5 neigh-
borhood.

Recent developments in this area have been related to
depth coding; how to avoid the loss of precision due
to compression, and how to use inter frame relations
between depth values make better use of predictive
frames. The two main strategies are independent [6]
and texture-assisted [5] depth coding. Kim et al. [3]
propose a method to evaluate how depth coding influ-
ences the quality of the results.

Merkle et al. [7] introduces a plane fitting approxima-
tion to simplify blocks of data, segmenting by contour.
This can be used to extract meshes (using Delaunay tri-
angulation on the edges of the contour) and to simplify
data by simplifying geometric information, thus having
a better encoding of the data.

Despite allowing effective 3D representations, multi-
view+depth coding implies dense representations not
considering the redundancy always present when multi-
ple cameras image the same scenario. The LDI concept
was introduced to allow saving data by reducing redun-
dancy.

Yoon et al. [13] applies the LDI concept for VBR,
proving it to be more compact than standard multiview
coding. The data size of the multiview video linearly
increases with the number of cameras. The authors
suggest using the LDI representation to compress and
transmit this data, mainly due to the fact that any re-
dundant data seen by more than one point of view is not
transmitted. All optimizations applied to MVD can be
applied to LDIs, while not including repeated points, a
claim that is supported by Kirshantan et al. [4]. In their
following work [14], improvements to the LDI repre-
sentation are proposed, in particular layer aggregation
and layer filling, so temporal coding has a better perfor-
mance.



Muller et al. [9] discuss image-based representations
in the context of 3DV systems and head motion par-
allax as an interaction paradigm. The authors claim
that for stereo video, V+D is enough, while for several
views, multiview+depth where only a subset of views
with depth would be transmitted and intermediate views
synthesized at the receiver side. They then introduce a
different concept of LDI which is focused on 3DV sys-
tems. Instead of transmitting all the views, they trans-
mit a central view close to the desired by the user, and
residual information from side views to correct errors.

More recent work has focused on proposing better en-
coding for residual layers. Daribo and Saito [1] propose
a different residual layer estimation algorithm which in-
cludes inpainting and hole-filling. Also, Kirshantan et
al. [4] propose efficient encoding for this residual in-
formation including pre-processing the data for easier
layer generation.

In our work we propose a novel image-based represen-
tation and encoding algorithm, which varies the view-
point among the several capturing positions, in order to
allow larger acquisition and visualization baselines.

3 DESCRIPTION
The LDI is represented by a set of M layers Lldi =
{l1, l2, ..., lM} with each layer being an image-based
representation of the world as seen from the same cho-
sen "central viewpoint" vc among the set of acquisition
viewpoints of the data V = {v1,v2, ...,vN}.
We propose a different representation, where
one MVLDI will consist of a set of M layers
Lmvldi = {l1, l2, ..., lM} where each layer li represents
one of the viewpoints vi in V = {v1,v2, ...,vN}. Each
viewpoint vi has its own intrinsic and extrinsic cal-
ibration parameters in order to generate the layer
information.

The number of layers M has no direct relation to the
N in the case of the LDI, while in our approach, M is
typically equal to N, only being higher in the case of
camera calibration misalignment.

The classical representation for LDI has two disadvan-
tages in wider baseline capture scenarios, as exempli-
fied in Figure 1. Encoding of parallel surfaces to op-
tical rays, and excluding data from the process due to
the central viewpoint choice. This does not happen in
MVD encoding, due to the fact that encoding is per-
formed according to different points of view. No data
is discarded since it is seen at least once by its origi-
nal recording viewpoint, and unpopulated layers are not
created by parallel surfaces due to the fact that each sub-
sequent layer will have optical rays in different direc-
tions. Our proposed representation MVLDI combines
the advantages of both approaches, removing redundant
data, and correctly encoding wide-baseline scenarios.

Input: Point Cloud P, Acquisition viewpoints V
Output: MVLDI M
L← set of layers for each viewpoint
R← empty cloud
t← threshold distance
for all point pi ∈ P do

for all layer l j ∈ L do
di j← worldToImageSpace( pi, l j )
e j← l j[ di j.u, di j.v ]
if isInside( di j, l j ) then

if isRedundant( di j, e j, t ) then
break

else
if e j is empty then

addToLayer( di j, l j )
break

else
if di j.d < ei j.d then

replaceInLayer( di j, e j, l j )
retryPoint( e j )
break

addPoint(R,e j) //not encoded in any layer
if R is not empty then

re run with R
M← all non-empty layers

Algorithm 1: MVLDI encoding algorithm

3.1 Encoding algorithm
Our layer generation process is similar to the traditional
LDI algorithm described by Shade et al. [11]. Recently,
different processes have been proposed for this step [1,
4], which targeted optimizations for specific use case
scenarios. The proposed hole-filling and inpainting
techniques were targeted to a head-face parallax user
interaction paradigm, where corrections can be made
at image space, and assuming all pixels must be filled
at all times. If such assumptions were done about the
scenario to be used with MVLDI, these could be easily
incorporated. However, we established a more general
scenario, only assuming depth values were available per
pixel, which is common nowadays using commodity
depth cameras (e.g. MS-Kinect, Asus Xtion Pro, Intel
RealSense).

Initially, each of the RGBD frames is transformed into
a point cloud using the u,v image coordinates of each
pixel, the depth value d(u,v), and the intrinsic parame-
ters of the capture device. All resulting clouds are then
combined in a single volume P, using the transforma-
tions in the extrinsic matrix. Algorithm 1 describes the
encoding process for a given volume P.

We create N data structures, one for each layer l j, where
N is the number of cameras in the capture process. Each
one is positioned according to the extrinsic calibration
parameters for each one of the viewpoints, and is sized



according to the recording resolution of the input de-
vices.

For each input point pi, we try to encode it in a layer
l j by projecting it to that layer image space as a
depth pixel di j. If isInside(di j, l j), meaning that (u,v)
coordinates of di j are positive and smaller than the
width and height of the layer, we check for redundancy
isRedundant(di j,e j, t) (described in Section 3.2) where
e j is the depth pixel in layer l j at the (u,v) coordinates
of di j. In the case the data point is redundant, we start
processing pi+1, marking pi accordingly, not including
it in l j. Otherwise, the point is encoded if the depth
pixel ei j is currently empty. If it is not, and di j has
smaller depth than ei j, we add di j to l j, and ei j is added
for re-encoding. If ei j is already filled with a point with
smaller depth than di j, we go to the next layer.

Finally, in the case the point can not be placed in any
of the layers, we add it to a collection R which will be
processed with newly created layers. This is only the
case when calibration errors exist. In all of the tested
datasets these points were always encoded to a single
layer, and represented less than 0.1% of the original
point cloud. The final step will be adding all non empty
layers to the MVLDI M.

3.2 Redundancy detection
In the classical LDI definition, a point Puvd is consid-
ered to be redundant if ‖Puvd .d− Li[u,v].d‖ < t. Due
to the fact that a central viewpoint is defined, and only
depth comparisons are made in this particular image-
space, sampling of data is not equal in all directions.
When parallel to the viewing plane, pixel distance is
evaluated, which in world coordinates is higher propor-
tionally to the depth value and focal length f . When
along the optical rays coming from the LDI viewpoint,
a fixed threshold value t is used.

On a head-face parallax or 3DTV scenario, this was not
seen as a problem, due to the fact that visualization is
meant to be parallel to the central viewpoint. The sam-
pling rate in the viewing direction is not perceived in
these scenarios due to the visualization position restric-
tions. The lower sampling rate in the background pixels
is also not noticed due to the fact that a parallel move-
ment to the central viewpoint viewing plane does not
change their image-space distance, not revealing possi-
bly empty pixels.

Algorithm 2 shows our approach to the same problem.
The first key aspect of our method is using world coor-
dinates to estimate the distance between the pretended
point and the correspondent point in the layer, opposed
to just the depth value. The further away from the cen-
tral viewpoint of an LDI, the greater the discrepancy
between a depth-based threshold, and one based in Eu-
clidean coordinates.

Input: Puvd ,Pxyz point to be encoded in image and
world coordinates
Output: true or false
L← current Layer
t← threshold distance
f ← focal lenght from intr. matrix
s← Puvd .d

f
n← t

s
v0← di j.v−n
for i = Puvd .u−n to i = Puvd .u+n do

for i = Puvd .v−n to i = Puvd .v+n do
Quvd ← L[i, j]
if ‖Qxyz−Pxyz‖< t then

return true
return false

Algorithm 2: Redundancy detection algorithm. n sur-
rounding pixels are checked in order to properly evalu-
ate all points that might be under the threshold distance
t.

The second aspect is the fact that we also consider sur-
rounding pixels to Puvd . We first calculate the world
distance s between pixels at that depth by calculating
Puvd .d

f where Puvd .d is the depth value of the point be-
ing analysed, and f the focal distance from the intrin-
sics matrix. We then calculate the number of pixels to
be checked around the encoded point by dividing the
threshold t by s. By doing so, we very efficiently check
every possible point that might be in a distance smaller
than t from the considered point. Further layers do not
need to be checked since the order of layer considera-
tion is the same for each point, so in the case of a point
not being considered redundant in that layer, we will
naturally move to the next one to perform the same test.

Name # Cameras Baseline Pt. number
Dancer M 3 Wide 68.932
Dancer F 3 Wide 75.146
Simple 4 Narrow 563.315
Simple #2 4 Wide 491.707
Simple #3 7 Wide 828.822
Occluded 4 Narrow 567.331
Occluded #2 4 Wide 505.232
Sitting 4 Narrow 580.736
Selfie 4 Wide 511.161

Table 1: Description of the tested datasets.

4 RESULTS
We tested our approach with varied datasets captured
with the Microsoft Kinect sensor, each one holding dif-
ferent properties. Table 1 gives a brief description of
each dataset, and Figure 2 shows a snapshot of each.
We compared MVLDI with LDI using both the pro-
posed global thresholding algorithm, and the traditional



(a) Simple (b) Occluded (c) Simple #2 (d) Occluded #2

(e) Dancer F (f) Dancer M (g) Sitting (h) Selfie

Figure 2: Snapshot of our used datasets. Simple #3 is the same as Simple #2 but having 3 more cameras.

image-based technique in order to individually evalu-
ate the effect of each contribution. MVLDI with global
thresholding represents our proposed technique, and
LDI with image-based thresholding, the traditional LDI
implementation. Our goal was to minimize the number
of generated layers, while more effectively detecting re-
dundant data. Computing time of the MVLDI is typi-
cally smaller since less layers are created. However, us-
ing a large threshold on the redundancy detection may
increase computation time.
Both narrow and wide baseline were contemplated in
order to validate our claim of MVLDI having a supe-
rior performance than LDI on a wide scenario. Differ-
ent numbers of acquisition devices were also tested in
order to validate the scalability of the process, and also
validate the claim that redundancy is proportional to the
number of capture devices.
Finally, while most of our datasets were controlled
lab scenarios in order to control the disposition of the
objects related to the cameras, we also included data
captured from a realistic dance scenario (Figures 2e
2f). "Simple" datasets contained lines of boxes vis-
ible by most of the cameras (Figures 2a 2c) , "Oc-
cluded" datasets had a line of boxes occluded in one
of the points of view (Figures 2b 2d). Sitting and Selfie
(Figures 2g 2h) included a person in a controlled sce-
nario in order to better evaluate if redundancy detection
had a negative effect in the perception of more delicate
shapes.

4.1 Quantitative Analysis
Figure 3 shows the achieved results regarding redun-
dancy detection. The values in the table are calcu-
lated regarding the total number of points considered
for encoding. Table 2 shows the percentage of the to-
tal dataset that was discarded in the case of LDI due to
being outside the viewing volume of the central view-
point.
Our approach had a superior performance over LDI in
all tested datasets. Notably, the LDI approach had a

high number of low populated layers (over 100 in Sim-
ple, Occluded #2 and Selfie, as seen in Table 3) This ex-
perimentally confirms the problems exemplified in Fig-
ure 1a, experimentally confirmed in Figure 5. With a
wide-baseline capture setup, surfaces perpendicular to
the central viewpoint viewing plane will create an ele-
vated amount of created layers. Also, redundancy de-
tection on the wide-baseline scenarios was lower with
the classical approach. This is related to the amount
of non-encoded points (over 40% of in some scenarios
(Table 2, example in Figure1b) which would include
walls and floor sections where typically a lot of redun-
dancy was found, but also due to the redundancy detec-
tion algorithm.
The proposed global thresholding technique performed
better in all scenarios. The difference was smaller in
narrow scenarios, since the data was captured and sam-
pled from the same perspective, so a pixel-based com-
parison still had an impact, albeit smaller. The biggest
difference was found in wide baseline scenarios, where
several points under the used threshold were located in
neighboring pixels but not considered redundant only
considering the depth value.
When comparing solely the difference in the number of
points of view, the multiview approach had a smaller
number of layers in all scenarios, being close or equal
to the baseline for comparison (MVD, where the num-
ber of layers is equal to the number of input devices).
The multiview approach did not suffer from the prob-
lem presented in Table 2, where big segments of the
point cloud were discarded due to not being visualized
by the central viewpoint. This is essential in a free vi-
sualization application through a virtual camera, spe-
cially in wide-baseline scenarios. Redundancy detec-
tion in MVLDI was higher in all scenarios except for
the Dancer scenarios where only three cameras were
used, and no data was left out of the encoding process.
An argument could be made about the choice of the cen-
tral viewpoint for the LDI, and considering a virtually
generated point of view that would include all of the



Figure 3: Percentage of data detected as redundant from the original cloud.

Dancer M Dancer F Simple Simple #2 Simple #3 Occluded Occluded #2 Sitting Selfie
0% 0% 19% 48 % 39% 19% 46% 20 % 45%

Table 2: Percentage of points discarded by the LDI approaches due to being outside of the frustum of the central
viewpoint.

data. The main problem with this proposition is the
fact that a single viewpoint that includes all the data
would necessarily be placed further away than the ex-
isting acquisition viewpoints, which certainly increases
the problem in Figure 1a. The further the viewpoint is
from the data, the more likely the planar surfaces in the
cloud are aligned with the optical rays, increasing the
number of low-populated layers.

Several previous works on LDI have reported higher
rates of redundancy detection than the ones presented
in this article [13]. The datasets typically used for
benchmark are the breakdancers and ballet sequences
from microsoft research, which are aimed to a head-
face parallax interaction, or 3DTV. Cameras are sepa-
rated by approximately 20cm from each other, which is
a very narrow baseline. Also, depth precision is con-
siderably lower, with only 256 values to represent the
whole range of the scene. The depth cameras used in
this work have a precision in the order of milimiters,
which is why less values with the same depth are en-
countered using the image-based algorithm.

4.2 Qualitative Analysis
Although we report high redundancy removal in all of
the presented scenarios, the quality of the visualization
was not compromised. Figure 4 shows a side by side
comparison of the input cloud, the redundant data, and
the encoded result. On the dancer example where 27%
redundancy was reported, data from the dancers back,
silhouette, and floor were correctly reported as redun-
dant (Figure 4b), not compromising the final visualiza-
tion, as seen in Figure 4c.

On "Occluded" where a narrow baseline setup was
used, we can clearly see a large amount of data (42%)
consisted of walls, floor, and only the front part of
the non-occluded box as being reported as redundant
(Figure 4e), with the remainder of the data, included

the boxes behind the front one, being perfectly visible
in the encoded version (Figure 4f).

Also, considerations about the viability of MVLDI on
a video scenario can be made. Our generated layers are
less sparse as seen on figure 5, and in a smaller num-
ber, as seen in Table 3. We can more easily guarantee
coherent matches between frames using block match-
ing algorithms due to having more densely populated
regions on the image. Also, our final number of layers
is typically equal to the number of acquisition view-
points, unlike LDI’s which are inherently dependent on
the content of the scene, and might create uneven dis-
tribution of layers per frame, which are less reliable for
temporal matching.

Name LDI
Image

MVLDI
Image

LDI
Global

MVLDI
Global

Dancer M 23 4 7 3
Dancer F 20 4 6 3
Simple 10 5 8 4
Simple #2 115 5 11 4
Simple #3 88 11 16 8
Occluded 13 5 12 5
Occluded #2 119 5 10 4
Sitting 17 5 12 5
Selfie 125 5 9 4

Table 3: Number of layers generated by each approach.
MVLDI with global thresholding has the overall lower
number of layers.

5 CONCLUSION
We presented MVLDI, an alternative data represen-
tation for a single frame of multiview video that al-
lows wide-baseline VBR applications to take advantage
of the redundancy detection of the LDIs. Moreover,
MVLDI is also a more efficient alternative to represent
a point cloud for an image-based rendering scenario.



(a) Original Dancer M (b) Redundant Dancer M (c) Encoded Dancer M

(d) Original Occluded (e) Redundant Occluded (f) Encoded Occluded

Figure 4: Result of the encoding process. Original (a, d), redundancy removed (b, e), and encoded data (c, f) for a
wide and a narrow baseline scenario (top vs bottom row).

An alternative redundancy detection technique was in-
troduced, which considers points in a global space op-
posed to the image-space thresholding of LDI, ensuring
a homogeneous sampling of the data.
Our results showed that the proposed approach creates
a smaller number of layers and detects redundancy at
higher rates in both narrow and wide baseline scenarios,
while also showing higher efficiency in scenarios with
more cameras. The generated Layers are more dense
than the typical residual LDI layers. They can be ef-
fectively used for temporal compression on video, and
also geometry estimation, as proposed by [7].
Although results with a higher number of cameras were
positive, the more cameras we have, the order of evalua-
tion of viewpoints becomes more important. Our future
work will be focused on evaluating the optimal order
of encoding for the data, or the generation of alterna-
tives viewpoints that provide an efficient encoding, and
evaluating the application of temporal compression and
depth encoding to our work. This technique will also be
essential on encoding a point cloud that has no capture
viewpoint information, such as a single sensor perform-
ing a sweep scan of large structures.
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